Identifying Key Drivers of Return Reversal with Dynamical Bayesian Factor Graph
نویسندگان
چکیده
In the stock market, return reversal occurs when investors sell overbought stocks and buy oversold stocks, reversing the stocks' price trends. In this paper, we develop a new method to identify key drivers of return reversal by incorporating a comprehensive set of factors derived from different economic theories into one unified dynamical Bayesian factor graph. We then use the model to depict factor relationships and their dynamics, from which we make some interesting discoveries about the mechanism behind return reversals. Through extensive experiments on the US stock market, we conclude that among the various factors, the liquidity factors consistently emerge as key drivers of return reversal, which is in support of the theory of liquidity effect. Specifically, we find that stocks with high turnover rates or high Amihud illiquidity measures have a greater probability of experiencing return reversals. Apart from the consistent drivers, we find other drivers of return reversal that generally change from year to year, and they serve as important characteristics for evaluating the trends of stock returns. Besides, we also identify some seldom discussed yet enlightening inter-factor relationships, one of which shows that stocks in Finance and Insurance industry are more likely to have high Amihud illiquidity measures in comparison with those in other industries. These conclusions are robust for return reversals under different thresholds.
منابع مشابه
Identifying and Ranking Development Drivers of Knowledge-based Technology-Driven Companies (Case study: Fars Province Science and Technology Park)
The purpose of this Study study is to identify and rank the development drivers of knowledge-based, technology-driven businesses. This work is conducted as a case study in Fars Province Science and Technology Park. It is a descriptive survey in terms of purpose since a part of its data is collected through questionnaires and is of surveying type because it describes the existing conditions. The...
متن کاملENTROPY OF DYNAMICAL SYSTEMS ON WEIGHTS OF A GRAPH
Let $G$ be a finite simple graph whose vertices and edges are weighted by two functions. In this paper we shall define and calculate entropy of a dynamical system on weights of the graph $G$, by using the weights of vertices and edges of $G$. We examine the conditions under which entropy of the dynamical system is zero, possitive or $+infty$. At the end it is shown that, for $rin [0,+infty]$, t...
متن کاملAn Analysis of Key Propellants Affecting Livestock Return in Forests with a Futuristic Approach (Study in Golestan Province)
Today, livestock outflows from the forests of the north of the country have created environmental and social challenges and problems that have caused concern to natural resource policy makers. The re-emergence of livestock and ranchers illegally in the forests for various reasons has created disputes and tensions with conservation systems. In this regard, the present study was conducted to ana...
متن کاملIdentification of driving forces, uncertainties and future scenarios of Iran's environment
Background and Objective: Global macro trends on the one hand, and domestic trends and effective factors on the other, have put the future of the Iran's environment in a state of uncertainty with concern. In a complex and unpredictable environment, the use of scenario thinking (based on identifying and detecting future drivers and uncertainties) can provide tangible and comprehensible images of...
متن کاملBayesian and Markov chain Monte Carlo methods for identifying nonlinear systems in the presence of uncertainty
In this paper, the authors outline the general principles behind an approach to Bayesian system identification and highlight the benefits of adopting a Bayesian framework when attempting to identify models of nonlinear dynamical systems in the presence of uncertainty. It is then described how, through a summary of some key algorithms, many of the potential difficulties associated with a Bayesia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016